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The entropy of a Lennard-Jones model solid was calculated as a function of temp- 
erature, for both the fee and hcp phases, using data derived from a molecular dynamics 
computer simulation. Two independent methods of calculation were used, one based 
on the Boltzmann H theorem and the other on the power spectrum method of Dickey 
and Paskin. 

1. INTRODUCTION 

The stability of crystal structures has been sometimes attributed to the relative 
energies of the different structures, the stable phase being the structure of lowest 
energy. For example, the cohesive energy of the solid phases of the inert gases has 
been carefully calculated to turd the stable lattice type [l-4]. Similar studies have 
been made on alkali halide crystals [5,6] and for a number of metals [7, 81. No 
matter how exactly the cohesive energy is determined, however, the question of 
stability is not resolved. In fact stability and metastability are determined by the 
relative free energies, and it is the phase of lowest free energy which is in thermo- 
dynamic equilibrium. 

The difference in Gibbs free energy between two phases at fixed temperature 
T and pressure P is expressed as 

AF=AE+PAV-TAS, (1) 

where E is the internal energy, V the volume and S the entropy of the solid. A zero 
in the free energy difference AF for some temperature and pressure indicates a 
phase transition at that point. The presence of the entropy term TAS shows that 
only the low temperature structure is determined by the cohesive energy alone: 
at all finite temperatures the full free energy must be considered. This is especially 
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important in systems where the enthalpy difference between two phases is nearly 
zero, that is 

dE+PLlVcz0, (2) 

such as in the inert gases and the alkali halides. It is also true of the Lennard-Jones 
model solid. In such cases it is essential to include the entropy contribution to the 
free energy. 

In this present work we investigate the entropies of the fee and hcp phases 
of a simple model solid, with a first nearest neighbor central potential of the 
Lennard-Jones type. The model is described in detail in Section 2. Both fee and 
hcp phases are stable against small deformations, and because of the restriction 
to first neighbor interactions they have the same static energies. Differences in 
entropy between them must, therefore, be investigated to determine which of them 
is the stable and which the metastable form. 

The cause of this entropy difference lies in the vibrational characteristic of the 
two lattices. One way of approximately calculating the entropy is via the frequency 
spectrum D(W) of the lattice vibrations. An expression for the vibrational entropy 
valid for the temperature range of interest (i.e., where quantum effects are negligible) 
is given by [9] 

S(T) = k s D(w)(l + In(kl”lfiw)) do, (3) 

where k is Boltzmann’s constant and D(o) is normalized to 3N, the number of 
vibrational modes in a crystal containing N atoms. For a limited range of temper- 
ature the frequency spectrum can be obtained from a perturbation treatment of a 
harmonic analysis of the crystal, and the free energy and entropy derived from 
it [lO-121. On the other hand, the molecular dynamics technique [13, 141 allows 
us to compute the effective frequency spectrum, via the autocorrelation functions 
[15], at any temperature at which the model system can be simulated. Such calcula- 
tions of the frequency spectra, using both lattice dynamics and molecular dynamics, 
to find the fee and hcp phase entropies as a function of temperature are described 
in Sections 3 and 4. 

There is a second method of calculating the entropy, which is described in 
Section 5 and which is independent of any form of vibrational analysis. This 
method is derived from Boltzmann’s H theorem 1161: the entropy is found from 
phase space distribution functions which are measured directly in the course of a 
molecular dynamics simulation. Furthermore, this method can be used to monitor 
the progress of a simulation, so that thermodynamic averages are taken only in the 
equilibrized state of the system, It is shown in Sections 5 and 6 that this method 
increases the accuracy and reliability with which the entropy can be found. Finally 
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in Section 7 the calculations of the fee-hcp entropy difference by the two methods 
are described. It was found that the fee system has the higher entropy and is, 
thus, the stable form. 

2. THE MODEL 

The Lennard-Jones model solid was used, in which the atoms interact via a pair 
potential 

V(r) = r,((r&)la - 2(r,/r)G). (4) 

This potential is computationally convenient, and in addition it represents quite 
well the interaction of inert gas atoms. To give substance to our calculations we 
took values of the parameters E,, , r,, to describe the solid phase of krypton. The 
chosen values of E,, = 3.104 1O-21 J and r, = 3.99 lo-lo m reproduce the ex- 
perimental lattice parameter and cohesive energy. The potential (4) was truncated 
between the first and second nearest neighbor distances. With either first or first 
and second neighbor interactions this model solid can occur in any close packed 
crystal structure, including the fee and hcp lattices. All of these structures are 
statically stable, and satisfy the approximation (2). 

A feature of the molecular dynamics method is that only systems containing a 
limited number of atoms can be studied (of the order of 1000-1500). The system 
can, however, be made effectively infinite by the use of periodic boundary con- 
ditions. In this case the atoms of the system must be confined to a parallelepiped 
region of space (this is trivial if they form a lattice), and this cell is then repeated 
to fill all of space. The computation is then confined to the atoms in this parallel- 
epiped (referred to as the computational cell) together with as many atoms in the 
repeated cells as fall within the range of the interactions of the atoms of the 
computational cell. These atoms outside the computational cell are referred to as 
the ghost atoms, and it is usually necessary to take 100-500 ghost into the com- 
putational scheme. With the number of atoms typically involved in the molecular 
dynamics method, it is obvious that the repeat distance of the periodic boundaries 
(i.e., the dimensions of the computational cell) are of the order of ten atomic 
spacings, which is much smaller than that normally associated with periodic 
boundaries (macroscopic dimensions). The shape of the computational cell must, 
therefore, be chosen with care. 

The system chosen for study in the fee case contained 672 atoms. The computa- 
tional cell was a rectangular box whose edges lay in the [ill], [liO], and [llz] 
directions. The system was, thus, built up from close packed planes of atoms, 
rectangular in section, stacked in the [ll l] direction. Each close packed plane 
contained eight close packed atom rows (the [liO] direction), and each row con- 
tained seven atoms. Twelve such planes were stacked together as shown in Fig. 1, 
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I;zc. 1. (a) Those sections of the close packed planes (types A, B, and C) from which the 672 

atom fee and hcp systems were constructed; (b) The stacking sequence of the fee system; (c) The 
stacking sequence of the hcp system. 

so that the cell was as near to being a cube as the lattice structure permitted. The 
hcp system, which must be as nearly comparable to the fee system as possible, was 
obtained from the fee system by a simple restacking of the close packed (111) 
planes (Fig. 1). In this way the hcp and fee systems were given equal numbers of 
atoms and computational cells of identical dimensions. In conventional notation 
the stacking sequence was ABCABCABCABC in the fee case and ABABABABAB 
in the hcp system. 

3. PERIODIC BOUNDARIES AND FREQUENCY SPECTRUM 

The periodic boundaries of the model system prevent the molecular dynamics 
method from accurately measuring the frequency spectrum D(o). The frequency 
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spectrum is measured by sampling k space at many points in the tist Brillouin 
zone, and constructing a histogram of the frequencies of the phonons with these k 
vectors. The net of allowed k vectors in this zone is determined by the periodic 
boundaries, and the total number of these vectors is equal to the number of atoms 
enclosed by the boundaries. Thus, in molecular dynamics simulations, with about 
1000 atoms, we sample about 1000 points in k space. Thus, the integration (3) in 
finding the entropy is performed over a correspondingly coarse mesh of frequency. 
We, therefore, investigated the effect of the choice of periodic boundaries on the 
calculated frequency spectrum (and, hence, the entropy) by performing lattice 
dynamics calculations both on infinite systems, with a large sample of points in the 
Brillouin zone and on small systems. 

The secular determinant for the fee crystal with fist neighbor interactions is 
given by de Launay [17], and the calculated ‘infinite’ frequency spectrum is shown 
in Fig. 2. In all some 10,000 points in the l/48 Brillouin zone were sampled. The 

f 
D(O) 

, 4.0 8.0 w 

(c) 

FIG. 2. The frequency spectrum of the fee lattice: (a) the 672 atom system; (b) the 500 atom 
system; (c) the infinite system. 

DIW) 

peaks corresponding to the transverse and longitudinal phonons are clearly seen. 
This was compared with the calculated spectra for 500 and 672 atom fee systems, 
and the results are again plotted in Fig. 2. The 500 atom system had a cubic 
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computational cell, with edges parallel to the cubic axes. The frequency spectrum 
deviated considerably from the infinite system. Much better results were obtained 
for the 672 atom system, which is that described in Section 2. The explanation lies 
in the different degrees of symmetry of the two smaller systems. The 500 atom 
system has in fact only 27 independent k vectors, and, hence, the effective inte- 
gration mesh is very coarse. In the 672 atom case the degree of degeneracy is 
substantially reduced, as the k vectors are moved away from the symmetry planes. 

The secular determinant in the hcp case was obtained from Slutsky and Garland’s 
result [18], omitting the terms arising from the second neighbor interactions. The 
frequency spectrum of the ‘infinite’ system is plotted in Fig. 3, together with the 
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fiG. 3. The frequency spectrum of the hcp lattice: (a) the 672 atom system; (b) the infinite 
system. 

(b) 

frequency spectrum of the 672 atom hcp system described in Section 2. The two 
spectra have similar shapes: although the computational cell boundaries in this 
case lie in high symmetry directions, the hcp lattice has fewer symmetry elements 
than the fee lattice. 
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4. MOLECULAR DYNAMICS AND POWER SPECTRUM 

In the molecular dynamics simulation of the model systems described in Section 
2, we define the power spectrumf(o) as 

f(w) = 1,” y(t) cos(ot) dt; (5) 

it is the Fourier transform of the velocity autocorrelation function y(t), which 
is defined by 

kere vi(t) the velocity of the i’th atom as a function of time, which is available 
directly from the molecular dynamics simulation. The angular brackets indicate 
that a thermodynamic average is taken. The most convenient way of achieving this 
is to average (6) over different origins in time. 

Dickey and Paskin [ 151 have shown that for a collection of oscillators in ther- 
modynamic equilibrium the power spectrum f(w) is identical to the frequency 
spectrum D(o). We assume that the average value of f(o) at any temperature is 
equal to the average frequency spectrum, which is a justifiable assumption if the 
average frequency spectrum can be found within the computational time available 
(this is, of course, the real upper limit of the integral (5)). Dickey and Paskin also 
show by a numerical calculation that the power spectrum at very low temperatures 
is the same as the frequency spectrum derived from lattice dynamics. 

The frequency spectrum which is found from (6) and (5) can then be used in the 
expression for the vibrational entropy (3), and the entropy of the model can thus 
be calculated. It is clear that this method of calculating the vibrational entropy 
involves several approximations of a numerical nature. First the velocity auto- 
correlation function is truncated after a time typically of the order of lo-l1 s. 
This in itself prevents us from discovering the finer details of the frequency 
spectrum. Further the number of velocity autocorrelation functions used to 
calculate the mean autocorrelation function is limited to about 20, due to the 
finite length of time for which each simulation is carried out. Finally the use of (3) 
implies that the entropy calculation is based on a harmonic model. However, 
other contributions are effectively taken into account by the use of an average 
frequency spectrum measured at the temperature in question, and averaged over a 
sufficient length of time to incorporate the annihilation and creation of phonons 
of new frequencies by the anharmonic part of the potential. 

Averaged velocity autocorrelation functions y(t) for the 672 atom fee system 
at the temperatures 63 K and 111 K are shown in Fig. 4. Two features can be noted. 
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FIG. 4. Velocity autocorrelation function y(t) for the 672atom fee system. - 63 “K, 
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First, the correlations are markedly more persistent at the higher temperature. 
Secondly, the first minimum in y(t) has been shifted towards larger time for the 
higher temperature. This shift is mainly a consequence of the thermal expansion 
of the system, which gives rise to an overall reduction of the force constants. The 
frequency spectra derived from these autocorrelation functions are shown in 
Fig. 5. It is seen that the distribution shifts towards lower frequencies with in- 
creasing temperature, again because of the thermal expansion. Also the distinctive 
peaks of the longitudinal and transverse phonons, which are clearly visible at the 
lower temperature, become less marked at the higher temperature. 

In Fig. 6 we show the frequency spectra of the 672 atom hcp system, at tempera- 
tures of 63 and 111 K, where similar changes with temperature are observed. On 
the other hand, the differences between the fee and hcp systems, which are quite 
noticeable in the lattice dynamics spectra of Figs. 2 and 3, tend to disappear as the 
temperature is raised. 
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FIG. 6. Power spectrum f(w) for the 672 atom hcp system. -63”K,------111°K. 

5. H THEOREM METHOD 

Boltzmann’s H function, which is simply related to the entropy of a system, is 
usually derived in connection with the ideals gas. In this case it is defined by [16] 

H(t) = V J + h(v, t)ln (-$ h(v, t)) d32), (7) 
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where h(v, t) is the distribution function for the atomic velocities, here normalized 
to unity. Boltzmann’s H theorem states that H, as a function of time, is minimized 
at thermodynamic equilibrium. If the system is not in equilibrium then H(t) is 
found to continuously decrease until the system reaches equilibrium. The minimum, 
or equilibrium, value of H(t) is connected to the maximum or equilibrium entropy. 
If we further include the possibility of a nonuniform space distribution in (7), then 
the expression for the H function is given by 

H(t) = N $ h(v, r, t) ln(Nh(v, r, t)) d3r d%, (8) 

where again h is normalized to unity. 
The integral (8) can be found directly from molecular dynamics, where the 

positions and velocities of each atom as a function of time are recorded. However, 
to make (8) easier to evaluate we introduced two approximations, which were later 
checked by a test calculation. First, it was assumed that the distribution function 
h(v, r, t) was separable into position and velocity distribution functions g(r, t) 
and f(v, t> 

W, r, 0 = fk 0 dr, 0, (9) 

which then gives for H 

H(t) = N In(N) + N s g(r, t) ln( g(r, t)) d9r 

+ N Jf(v, t) ln(f(v, t)) d”v. (10) 

The second approximation was to assume that both g and f have spherical sym- 
metry, so that they can be expressed as g(rz) andf(v2). Thus, dropping the constant 
term N In(N) in (lo), we can write H as the sum of finite elements [I91 

The elements mi and nj are the time averaged contributions from all the atoms 
to the distribution functions g andfin the ranges rj to rj + drj and vj to a, + dv, , 
respectively. The entropy, which is 

S= -H-k, (12) 

can be found from (11) provided we restrict the time averaging to the part of the 
simulation after equilibrium is achieved, as monitored by the minimum value of 
H being reached and maintained. 
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6. H THEOREM METHOD: A TEST CALCULATION 

A simple test of the H theorem method was made by calculating the entropy 
change along an isotherm of the 672 atom fee system. The system was held at a 
temperature of 63 K, and compressed from a lattice parameter a,, = 5.75 lo-lo m 
to 5.73 lo-lo m. 

The change in entropy can be calculated from the measured thermodynamic 
variables of the two states, which are also available from the molecular dynamics 
simulation. The change in enthalpy along the isotherm can be written in two ways 

AH = AE + A(PV), 
(13) 

AH=TAS+IVdP, 

and, hence, an expression for the entropy change is 

AS = l/T (AE + A(Pv) - j VdP). (14) 

With T = 63 K and measured values of 6.8 lo-lo J for AH and 7.36 lO-le J for 
the integral in (14), the entropy change was found to be 

As = -64.2 k. (15) 

A corresponding value of AS was found by the H theorem method. The velocity 
distribution function was found in both cases to be Maxwell-Boltzmann in form, 
and reached its equilibrium form far more rapidly than the spatial distribution 
function g(rz). Hence, the change in entropy was entirely due to the contribution 
from g(re), and the time taken to measure AS depended on the time taken to find 
the equilibrium form of g. Using the equilibrium values for g in (11) the change of 
entropy was calculated as 

AS = -65.4 k (16) 

in excellent agreement with the independently obtained value (15). The contribution 
of f(S) to AS was completely negligible. 

These two results can also be compared with a value obtained on the basis of a 
vibrational analysis. The Einstein frequencies of the atoms in the two states of the 
system were found to have the ratio 

(w1/u2)” = 0.9371, (17) 
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and, hence, the entropy difference which is found from (3) is 

AS = 312 Nk ln(w,/w2)2 

= -69.9 k. (1% 

The discrepancy here is, as expected, the largest, since we have crudely approxi- 
mated the frequency spectrum. On the other hand, the close agreement of (15) 
and (16) shows that the approximations that were made in the form of the distri- 
bution functions f and g are justifiable. 

7. ENTROPY CALCULATIONS ON fee AND hcp SYSTEMS 

Molecular dynamics runs for the fee and hcp 672 atom systems were made at 
temperatures of 63, 80, 100, and 111 K in both cases. Each run was made at 
constant volume, and the pressure was determined during the course of the run. 
Pairs of (E, V) values were chosen so that pressure was close to zero in every case. 
The maximum pressure recorded was about 100 atmospheres; which gives rise to 
a change in the free energy, through the PA V term of (l), of about 4.5 1O-24 J per 
atom, as compared with the zero pressure state. This correction will be seen to be 
small compared with the uncertainties in calculating the entropy and was neglected. 
More importantly, the pressure difference between the corresponding fee and hcp 
runs was about 1 atm, so that corrections to the free energy difference arising from 
the pressure term were in fact quite negligible. These runs were then analyzed, 
first by the power spectrum method and then by the H theorem method. 

The power spectrum was obtained from Eqs. (5) and (6), for a series of different 
truncations in the velocity autocorrelation function. From the power spectrum the 
entropy was calculated from Eq. (3), and the results for the four temperatures, as a 
function of truncation frequency, are shown in Fig. 7. The entropy differences 
between the two systems are shown in Fig. 8. It is seen that there is little dependence 
on the truncation frequency, provided it is greater than 1.0 10ls s-l. The error on 
the mean of the entropy differences was determined from the values of AS obtained 
using different time origines for the velocity autocorrelation function. The first 
500 cycles of each run were always excluded from consideration, so that a degree 
of equilibration had occurred before any averages were taken. The velocity auto- 
correlation functions were in fact determined from parts of the runs between cycle 
numbers 500 and 2500. The mean value of AS determined by this method was 
0.011 k per atom, with an uncertainty of 0.02 k per atom, or somewhat more than 
the magnitude of AS itself. 

The H function analysis used the same runs as the power spectrum case, but 
these runs were extended to a total of 6500 cycles (a time of 6.5 lo-l1 s). These runs 
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FIG. 7. Entropy of the fee and hcp 672 atom systems at temperatures of 63, 80, 100, and 
111 “K, versus truncation frequency in the power spectrum. Units are k per atom. 
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FIG. 8. Entropy difference between the fee and hcp 672 atom systems at temperatures of 63, 
80, 100, and 111 “K, versus truncation frequency in the power spectrum. Units are k per atom. 

were divided into sequences of 500 cycles, and at the end of each sequence the 
entropy was calculated from (1 l), with mi and ni averaged both over the sequence 
just completed, and also over all the completed sequences (except for the first 500 
cycles where some nonequilibrium features are expected to disappear). 

It was found that the contributions to the entropy from the velocity distribution 



302 MARTIN ET AL 

nj were constant throughout all the runs. This means that nonequilibrium features 
of the velocity distribution disappear within the lirst 500 cycles of beginning the 
simulation, and that fluctuations in this term have shorter periods than the 500 
cycle time (5 lo-l2 s). The total entropy for the eight simulations is shown in Figs. 
9-12. Here the entropy is calculated from the accumulated average of the distribu- 

I  1 ,  I  1 1 4 I  I  I  I  1 8 -  

1000 2000 3000 4000 5000 6000 Cycle tamher 

FIG. 9. Time development of the entropy as calculated from the H function for the fee and 
hcp 672 atom systems at 63 “K. Units are k per atom. 
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FIG. 10. Time development of the entropy as calculated from the H function for the fee and 
hcp 672 atom systems at 80 “K. Units are k per atom. 
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FIG. 11. Time development of the entropy as calculated from the H function for the fee and 
hcp 672 atom systems at 100 “K. Units are k per atom. 
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FIG. 12. Time development of the entropy as calculated from the H function for the fee and 
hcp 672 atom systems at 111 “K. Units are k per atom. 
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tion functions. The change in calculated entropy with time is due to the space 
distribution function, and it is seen that here the initial conditions are remembered 
for many more than 500 cycles. The time development of the entropy, taken from 
the 500 cycle averages, shows fluctuations of the order of 0.04 k per atom with 
periods of order 2500 cycles. The time taken to reach equilibrium in mj is also of 
this order. It is, therefore, important to delay taking thermodynamic averages 
until after this point. 

The curves of Figs. 9-12 show the accumulated average value of the entropy, 
with the first 500 cycles excluded. The average value of the entropy must increase 
until equilibrium is reached, when it remains constant. The reason that the curves 
of Figs. 9-12 show a rising tendency even after 6500 cycles is due to the influence 
of the early, nonequilibrium values, which were retained in the accumulated 
average. The 500 cycle average showed that equilibrium was in fact achieved after 
about 2500 cycles. The accumulated average was plotted to suppress the fluctuations 
which arise when averaging over a relatively small number of cycles. 

A comparison of the entropy calculations by the two methods is shown in Table 1. 

TABLE I 

The Entropy Change from the Value at 63 “K for the fee and hcp Systems from the 
Power Spectrum and H Function Methods 

Power spectrum H function 
method method 

Thermodynamic 
value 

T"K S( T)-S(63 “K) S(T)+63 “K) S( T)-S(63 “K) 

fee hcp fee hcp 
63 0 0 0 0 0 
80 0.795 0.805 0.921 0.914 0.859 

loo 1.558 1.558 1.799 1.777 1.662 
111 1.964 1.955 2.290 2.204 2.072 

The thermodynamically obtained value is the same for the two systems. All entropies in units 
of k per atom. 

Here is shown the increase in entropy with temperature for the two systems, referred 
to the base value at 63 K. The H function gives an entropy rise some 15 % greater 
than that of the power spectrum method. We can use this table to give an indepen- 
dent test of the two methods. Since the specific heat c, is very nearly constant in 
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this temperature range, and can be measured directly from the molecular dynamics 
simulation, it is possible to use the thermodynamic relation, 

(WaT), = c,lT, (19) 

to calculate the entropy differences of Table 1 sufficiently accurately to distinguish 
between the two methods. These values are shown in the fifth column of the table, 
and it is seen that the exact values lie exactly halfway between those of the power 
spectrum method and those derived from the H function. Thus, the various 
approximations give rise to equal (but opposite) deviations. It is satisfying to note, 
however, that the deviation in all cases is less than 0.2 k per atom. 

The entropy differences between the two phases, as calculated by the H function 
method, and averaged over the last 4500 cycles, are shown in Table 2. The de- 
pendence on temperature is only apparent: the constancy of the energy difference 
between the fee and hcp systems reveals that the entropy difference is constant 
over this temperature range to within 0.0007 k per atom. This entropy difference 
should, however, be correctly given by the mean of the four values of Table 2. 
We obtain 

dS = 0.017 f 0.19 k per atom; (20) 

the mean value, thus, lies in favor of a stable fee and metastable hcp. This can be 
compared directly with the result of Hoover [20], who obtained from a lattice 
dynamics calculation an entropy difference of 0.00148 k per atom. Thus, our 

TABLE II 

Entropy Difference of fee and hcp Systems 
Derived from H Function Method 

T AS 

63 -0.012 * 0.013 
80 -0.0048 i 0.018 

100 0.012 f 0.014 
111 0.074 f 0.017 

All entropies in units of k per atom. 

methods have produced a mean value some ten times larger than the harmonic 
analysis, although this is within the calculated uncertainty on our result. A com- 
parison can also be made with the results of Huckaby and Salsburg [21] for the 
high temperature Helmholtz free energy difference. They also employed hcp and fee 
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Lennard-Jones systems, for both first and first and second nearest neighbor 
interactions. With only first neighbor interactions, as we used, their free energy 
difference is equivalent to an entropy difference of 0.001475 k per atom, in excellent 
agreement with Hoover’s result, and again within the error on the mean of our 
value. 

Our aim in this paper has been to demonstrate the use of two methods, the 
power spectrum and H theorem method, in calculating the entropy of small model 
systems simulated by the molecular dynamics technique. In the examples chosen 
here to illustrate these methods, results have been obtained in agreement with those 
of harmonic analyses. However, the methods can also be applied in cases where 
harmonic analysis is inappropriate. The major criticism which can be made of our 
methods is their lack of accuracy, particularly when the difference of two large 
entropy values is required. In principle all that is required to improve the accuracy 
is a better thermodynamic averaging, which can be obtained with a longer period 
of simulation. However, we have already determined AS with an error on the mean 
of 0.02 k per atom and it is only the very small difference in the fee-hcp first 
nearest neighbor system that means that such accuracy is insufficient in this case. 
In other systems such precision may well be acceptable. 
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